UVa01660 Cable TV Network

題目連結:https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=0&problem=4535&mosmsg=Submission+received+with+ID+24585550
題意:給一張圖,求點連通度,即為需要拔掉幾個點,才能讓圖不連通。

解法:如果求邊連通度,直接枚舉點對用最大流去算,點連通度的話,要把點成兩個,之間流量為 $1$,原圖上的邊流量設無限大,之後一樣枚舉點對用最大流去算出(可以一個匯點,枚舉其他點為匯點,就能算出答案)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
using PII = pair<int, int>;
using PLL = pair<LL, LL>;
const int INF = 1e9;
const int MXN = 0;
const int MXV = 150;
const int MXE = 3000;
#define MP make_pair
#define PB push_back
#define F first
#define S second
#define FOR(i, L, R) for (int i = L; i != (int)R; ++i)
#define FORD(i, L, R) for (int i = L; i != (int)R; --i)
#define IOS \
cin.tie(nullptr); \
cout.tie(nullptr); \
ios_base::sync_with_stdio(false);

template <typename T> struct Dinic
{
int n, s, t, level[MXV], now[MXV];
struct Edge
{
int v;
T rf; // rf: residual flow
int re;
};
vector<Edge> e[MXV];
void init(int _n, int _s, int _t)
{
n = _n;
s = _s;
t = _t;
for (int i = 0; i <= n; i++)
{
e[i].clear();
}
}
void add_edge(int u, int v, T f)
{
// cout << u << ' ' << v << ' ' << f << '\n';
e[u].push_back({v, f, (int)e[v].size()});
e[v].push_back({u, 0, (int)e[u].size() - 1});
}
bool bfs()
{
fill(level, level + n + 1, -1);
queue<int> q;
q.push(s);
level[s] = 0;
while (!q.empty())
{
int u = q.front();
q.pop();
for (auto it : e[u])
{
if (it.rf > 0 && level[it.v] == -1)
{
level[it.v] = level[u] + 1;
q.push(it.v);
}
}
}
return level[t] != -1;
}
T dfs(int u, T limit)
{
// cout << u << ' ' << limit << '\n';
if (u == t)
{
return limit;
}
T res = 0;
while (now[u] < (int)e[u].size())
{
Edge &it = e[u][now[u]];
if (it.rf > 0 && level[it.v] == level[u] + 1)
{
T f = dfs(it.v, min(limit, it.rf));
res += f;
limit -= f;
it.rf -= f;
e[it.v][it.re].rf += f;
if (limit == 0)
{
return res;
}
}
else
{
++now[u];
}
}
if (!res)
{
level[u] = -1;
}
return res;
}
T flow(T res = 0)
{
while (bfs())
{
T tmp;
memset(now, 0, sizeof(now));
do
{
tmp = dfs(s, INF);
res += tmp;
} while (tmp);
}
// cout << s << ' ' << t << ' ' << res << '\n';
return res;
}
};

int main()
{
// IOS;
int n, m;
vector<int> u, v;
Dinic<int> dinic;
while (cin >> n >> m)
{
// cout << n << ' ' << m << '\n';
int ans = INF;
char ch;
u.resize(m + 5);
v.resize(m + 5);
FOR(i, 0, m) {
cin >> ch >> u[i] >> ch >> v[i] >> ch;
}
FOR(s, 0, n)
{
FOR(t, s + 1, n)
{
// cout << s << ' ' << t << '\n';
dinic.init(2 * n, s + n, t);
FOR(i, 0, n) { dinic.add_edge(i, i + n, 1); }
FOR(i, 0, m)
{
dinic.add_edge(u[i] + n, v[i], INF);
dinic.add_edge(v[i] + n, u[i], INF);
}
ans = min(ans, dinic.flow());
}
}
if (ans == INF)
{
cout << n << '\n';
}
else
{
cout << ans << '\n';
}
}
}

如果你覺得這篇文章很棒,請你不吝點讚 (゚∀゚)

Recommended Posts